A weighted L-q adaptive least squares support vector machine classifiers - Robust and sparse approximation
Liu, JL; Li, JP; Xu, WX; Shi, Y
发表期刊EXPERT SYSTEMS WITH APPLICATIONS
关键词Least Squares Support Vector Machine Weight Adaptive Penalty Classification Robust Sparse
摘要The standard Support Vector Machine (SVM) minimizes the c-insensitive loss function subject to L-2 penalty, which equals solving a quadratic programming. While the least squares support vector machine (LS-SVM) considers equality constraints instead of inequality constrains, which corresponds to solving a set of linear equations to reduce computational complexity, loses sparseness and robustness. These two learning methods are non-adaptive since their penalty functions are pre-defined in a top-down manner, which do not work well in all situations. In this paper, we try to solve these two drawbacks and propose a weighted L-q adaptive LS-SVM model (WLq-LS-SVM) classifiers that combines the prior knowledge and adaptive learning process, which adaptively chooses q according to the data set structure. An evolutionary strategy-based algorithm is suggested to solve the WLq-LS-SVM. Simulation and real data tests have shown the effectiveness of our method. (C) 2010 Elsevier Ltd. All rights reserved.
2011
卷号38期号:3页码:7,2253-2259
ISSN0957-4174
学科领域Computer Science ; Artificial Intelligence ; Electrical & Electronic ; Engineering ; Operations Research & Management Science
收录类别SCI
语种英语
WOS记录号WOS:000284863200106
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.casisd.cn/handle/190111/4331
专题中国科学院科技政策与管理科学研究所(1985年6月-2015年12月)
推荐引用方式
GB/T 7714
Liu, JL,Li, JP,Xu, WX,et al. A weighted L-q adaptive least squares support vector machine classifiers - Robust and sparse approximation[J]. EXPERT SYSTEMS WITH APPLICATIONS,2011,38(3):7,2253-2259.
APA Liu, JL,Li, JP,Xu, WX,&Shi, Y.(2011).A weighted L-q adaptive least squares support vector machine classifiers - Robust and sparse approximation.EXPERT SYSTEMS WITH APPLICATIONS,38(3),7,2253-2259.
MLA Liu, JL,et al."A weighted L-q adaptive least squares support vector machine classifiers - Robust and sparse approximation".EXPERT SYSTEMS WITH APPLICATIONS 38.3(2011):7,2253-2259.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A weighted Lq adapti(429KB) 开放获取--浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, JL]的文章
[Li, JP]的文章
[Xu, WX]的文章
百度学术
百度学术中相似的文章
[Liu, JL]的文章
[Li, JP]的文章
[Xu, WX]的文章
必应学术
必应学术中相似的文章
[Liu, JL]的文章
[Li, JP]的文章
[Xu, WX]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A weighted Lq adaptive least squares support vector machine classifiers – Robust.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。