CASISD OpenIR  > 系统分析与管理研究所
A dynamic ensemble learning with multi-objective optimization for oil prices prediction
Hao, Jun1; Feng, Qianqian2,3; Yuan, Jiaxin1; Sun, Xiaolei2; Li, Jianping1
发表期刊RESOURCES POLICY (IF:3.986[JCR-2019],4.332[5-Year])
关键词Ensemble forecasting Dynamic ensemble Time-varying weight Oil price forecasting Multi-objective optimization
摘要Accurately predicting oil prices is a challenging task since its complex fluctuation characteristics. This paper innovatively introduces the metabolism mechanism and sliding window technology and proposes a dynamic time-varying weight ensemble prediction model with multi-objective programming to ameliorate the oil price's prediction performance. This paper first adopts the random forest to select and generate the best feature sets. Second, different individual models are selected to build a heterogeneous ensemble prediction framework. Then, a multi-objective weight generation model is established by considering horizontal and directional accuracy. Moreover, the nondominated sorting genetic algorithm-II is utilized to compute the prediction errors of a single model at different stages and achieve model optimization selection and ensemble weight generation. Finally, we take Brent and WTI oil prices as the prediction objects to verify the effectiveness and superiority of the proposed model. The experimental results reveal that the dynamic time-varying weight ensemble forecasting model has excellent prediction capability for oil prices and can become an effective forecasting tool.
2022
卷号79
ISSN0301-4207
文章类型Article
DOI10.1016/j.resourpol.2022.102956
关键词[WOS]MODEL
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Environmental Studies
WOS记录号WOS:000862851400002
引用统计
正在获取...
文献类型期刊论文
条目标识符http://ir.casisd.cn/handle/190111/12067
专题系统分析与管理研究所
作者单位1.Univ Chinese Acad Sci, Sch Econ & Management, Beijing 100190, Peoples R China
2.MOE Social Sci Lab Digital Econ Forecasts & Policy, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Sci & Dev, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Publ Policy & Management, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Hao, Jun,Feng, Qianqian,Yuan, Jiaxin,et al. A dynamic ensemble learning with multi-objective optimization for oil prices prediction[J]. RESOURCES POLICY,2022,79.
APA Hao, Jun,Feng, Qianqian,Yuan, Jiaxin,Sun, Xiaolei,&Li, Jianping.(2022).A dynamic ensemble learning with multi-objective optimization for oil prices prediction.RESOURCES POLICY,79.
MLA Hao, Jun,et al."A dynamic ensemble learning with multi-objective optimization for oil prices prediction".RESOURCES POLICY 79(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hao, Jun]的文章
[Feng, Qianqian]的文章
[Yuan, Jiaxin]的文章
百度学术
百度学术中相似的文章
[Hao, Jun]的文章
[Feng, Qianqian]的文章
[Yuan, Jiaxin]的文章
必应学术
必应学术中相似的文章
[Hao, Jun]的文章
[Feng, Qianqian]的文章
[Yuan, Jiaxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。