Knowledge Management System of Institutes of Science and Development ,CAS
A novel cryptocurrency price trend forecasting model based on LightGBM | |
Sun Xiaolei; Liu Mingxi; Sima Zeqian | |
发表期刊 | FINANCE RESEARCH LETTERS |
关键词 | Cryptocurrency Trend forecasting LightGBM Forecasting performance |
摘要 | Forecasting cryptocurrency prices is crucial for investors. In this paper, we adopt a novel Gradient Boosting Decision Tree (GBDT) algorithm, Light Gradient Boosting Machine (LightGBM), to forecast the price trend (falling, or not falling) of cryptocurrency market. In order to utilize market information, we combine the daily data of 42 kinds of primary cryptocurrencies with key economic indicators. Results show that the robustness of the LightGBM model is better than the other methods, and the comprehensive strength of the cryptocurrencies impacts the forecasting performance. This can effectively guide investors in constructing an appropriate cryptocurrency portfolio and mitigate risks. |
2020 | |
卷号 | 32期号:101084页码:1 |
DOI | 10.1016/j.frl.2018.12.032 |
收录类别 | SSCI ; SSCI |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.casisd.cn/handle/190111/9774 |
专题 | 中国科学院科技战略咨询研究院 |
推荐引用方式 GB/T 7714 | Sun Xiaolei,Liu Mingxi,Sima Zeqian. A novel cryptocurrency price trend forecasting model based on LightGBM[J]. FINANCE RESEARCH LETTERS,2020,32(101084):1. |
APA | Sun Xiaolei,Liu Mingxi,&Sima Zeqian.(2020).A novel cryptocurrency price trend forecasting model based on LightGBM.FINANCE RESEARCH LETTERS,32(101084),1. |
MLA | Sun Xiaolei,et al."A novel cryptocurrency price trend forecasting model based on LightGBM".FINANCE RESEARCH LETTERS 32.101084(2020):1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A novel cryptocurren(828KB) | 期刊论文 | 作者接受稿 | 开放获取 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论